Given g(x) = 5x^2 - 4xg(x)=5x24x and h(x) = 3x + 9h(x)=3x+9 how do you find g(h(x))?

2 Answers
Feb 3, 2016

This means that you must plug in h into g

Explanation:

g(h(x)) = g(3x + 9)

= 5(3x + 9)^2 - 4(3x + 9)5(3x+9)24(3x+9)

= 5(9x^2 + 54x + 81 ) - 12x - 365(9x2+54x+81)12x36

= 45x^2 + 270x + 405 - 12x - 3645x2+270x+40512x36

= 45x^2 + 258x + 36945x2+258x+369

Hopefully this helps!

Feb 3, 2016

g(h(x))=45x^2+258x+369g(h(x))=45x2+258x+369

Explanation:

g(x)=5x^2−4xg(x)=5x24x , h(x)=3x+9h(x)=3x+9
g(h(x))=g(3x+9)g(h(x))=g(3x+9)
=5(3x+9)^2-4(3x+9)=5(3x+9)24(3x+9)
=5(9x^2+54x+81)-12x-36=5(9x2+54x+81)12x36
=45x^2+270x+405-12x-36=45x2+270x+40512x36
=45x^2+258x+369=45x2+258x+369 => expanded form

3(15x^2 + 86x + 123)3(15x2+86x+123)
=3(15x+41)(x+3)=3(15x+41)(x+3)=> factored form