Given g(x) = 5x^2 - 4xg(x)=5x24x and h(x) =sqrt(x - 7)h(x)=x7 how do you find g(h(x))?

1 Answer
Feb 28, 2016

5x - 35 - 4sqrt(x-7) 5x354x7

Explanation:

g(h(x)) = g(sqrt(x-7)) g(h(x))=g(x7)

Now substitute x = sqrt(x-7) " for x in g(x) "x7 for x in g(x)

hence: g(sqrt(x-7)) = 5(sqrt(x-7))^2 - 4(sqrt(x-7)) g(x7)=5(x7)24(x7)

now (sqrt(x-7))^2 = x-7 (x7)2=x7

rArr g(h(x)) = 5(x-7) -4(sqrt(x-7)) g(h(x))=5(x7)4(x7)

= 5x - 35 - 4(sqrt(x-7))=5x354(x7)