Given g(x)=5x4 and h(x)=4x2+7 how do you find h(g(1))?

2 Answers
Mar 13, 2016

You must plug 1 in for x inside its respective function. Once you get the result from that calculation you must plug it into the adjacent function.

Explanation:

h(g(1))=4(5(1)4)2+7

h(g(1))=4(1)2+7

h(g(1))=4+7

h(g(1))=11

Don't forget to work from inside to the outside. Example: f(g(h(x)))=h inside g inside f

Practice exercises:

  1. Evaluate the following compositions if f(x)=2x2,g(x)=3x24x+1andh(x)=2x+9

a). h(g(f(x)))

b). g(f(g(h(x))))

c). g(h(f(6)))

Good luck!

Mar 13, 2016

h(g(1))=11

Explanation:

Doing one step at a time!

Consider g(1)

g(x)=5x4

g(1)=5(1)4=54=1=±1

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider h(g(1))

h(x)=4x2+7

h(g(x))=4(g(x))2+7

h(g(1))=4(g(1))2+7

h(g(1))=4(±1)2+7

But (1)2=(+1)2=+1

h(g(1))=4(+1)2+7

h(g(1))=4+7=11