Given L_1->x+3y=0L1x+3y=0, L_2=3x+y+8=0L2=3x+y+8=0 and C_1=x^2+y^2-10x-6y+30=0C1=x2+y210x6y+30=0, determine C->(x-x_0)^2+(y-y_0)^2-r^2=0C(xx0)2+(yy0)2r2=0 tangent to L_1,L_2L1,L2 and C_1C1?

1 Answer
Sep 6, 2016

See below.

Explanation:

Firstly we will pass the geometrical objects to a more convenient representation.

L_1->x+3y=0L1x+3y=0 to L-1->p =p_1+lambda_1 vec v_1 L1p=p1+λ1v1
L_2->3x + y +8 =0L23x+y+8=0 to L_2->p=p_2+lambda_2 vec v_2L2p=p2+λ2v2
C_1-> x^2+y^2-10x-6y+30=0C1x2+y210x6y+30=0 to C_1->norm(p-p_3)=r_3C1pp3=r3

Here
p_1 = (0, 0)p1=(0,0)
p_2 = (-2, -1)p2=(2,1)
vec v_1 = (1, 3)v1=(1,3)
vec v_2 = (3, 1)v2=(3,1)
p_3 = (5, 3)p3=(5,3)
r_3 = 2r3=2

Now, given

L_1->p=p_1+lambda_1 vec v_1L1p=p1+λ1v1
L_2->p=p_2+lambda_2 vec v_2L2p=p2+λ2v2
C_1->norm(p-p_3)=r_3C1pp3=r3

and

C->norm(p-p_0) = rCpp0=r

with p=(x,y)p=(x,y)

If CC is tangent to L_1, L_2L1,L2 and C_1C1 then

p_0 in L_{12}p0L12 where

L_{12}->p_(12)+lambda_(12) vec v_(12)L12p12+λ12v12

with p_(12) = L_1 nn L_2p12=L1L2 and vec v_(12) = vec v_1/norm(vec v_1) + vec v_2/norm(vec v_2)v12=v1v1+v2v2

Other conditions for p_0p0 and rr are

norm(p_(12)-p_0)^2- << p_(12)-p_0, vec v_1/norm(vec v_1) >>^2 = r^2p12p02p12p0,v1v12=r2
norm(p_0-p_3) = r + r_3p0p3=r+r3

but

p_0=p_(12)+lambda_(12)vec v_(12)p0=p12+λ12v12

so

lambda_(12)^2norm(vec v_(12))^2-lambda_(12)^2 << vec v_(12),vec v_1/norm(vec v_1) >> ^2= r^2λ212v122λ212v12,v1v12=r2

and

norm(p_(12)+lambda_(12) vec v_(12) - p_3)^2=(r+r_3)^2p12+λ12v12p32=(r+r3)2
norm(p_(12)-p_3)^2+2lambda_(12) << p_(12)-p_3, vec v_(12) >> +lambda_(12)^2 norm(vec v_(12))^2=(r+r_3)^2p12p32+2λ12p12p3,v12+λ212v122=(r+r3)2

The essential set of equations to obtain the solution is

{(lambda_(12)^2(norm(vec v_(12))^2 - << vec v_(12),vec v_1/norm(vec v_1) >> ^2)= r^2), (norm(p_(12)-p_3)^2+2lambda_(12) << p_(12)-p_3, vec v_(12) >> +lambda_(12)^2 norm(vec v_(12))^2=(r+r_3)^2):}

two equations and two incognitas r, lambda_(12)

Solving for r, lambda_(12) we obtain

((lambda_(12) = 1.64171, r = 1.31337),(lambda_(12) = 8.00809, r = 6.40647))

The attached plot shows the answer in red and the initial elements in black.

enter image source here