Given point (-8,8) how do you find the distance of the point from the origin, then find the measure of the angle in standard position whose terminal side contains the point?

1 Answer
Mar 19, 2018

Measure of the angle theta = 135^@ or ((3pi)/4)^c

Explanation:

Distance formula : d = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)

Given point A (-8, 8) and Origin O (0,0)

vec(OA) = r = sqrt ((-8)^2 + 8^2) = sqrt 128 = 8sqrt2

x = r cos theta, y = r sin theta

- 8 = 8 sqrt2 cos theta

cos theta = -cancel8 / (cancel8 sqrt2) = -1/sqrt2 or theta =color(purple)( - pi/4 = (pi - pi/4) = (3pi)/4

Similarly, 8 sqrt2 sin theta = 8

sin theta = 8 / (8 sqrt2) = 1/sqrt2 or theta = pi/4 or = pi - pi/4) = (3pi)/4

Slope of the line m = tan theta = -8 / 8 = -1

x (-) and y (+) in II quadrant.

Hence theta = tan ^-1 (-8/8) = tan^-1 -1 = -1 = (3pi)/4

enter image source here
(useruploads.socratic.org)