Given #sintheta=(2sqrt2)/3# and #pi/2<theta<pi#, how do you find #tan2theta#?

1 Answer
Jul 10, 2016

#(4sqrt2)/7#

Explanation:

#sin t = (2sqrt2)/3#. Find cos t by identity: #cos^2 t = 1 - sin^2 t#
#cos^2 t = 1 - 8/9 = 1/9# --> #cos t = +- 1/3#
Since t is Quadrant II, then cos t is negative. --> #cos t = -1/3#
Next, find sin 2t and cos 2t by the identities:
#sin 2t = 2sin t.cos t#
#cos 2t = 2cos^2 t - 1#
#sin 2t = 2sin t.cos t = 2(-1/3)((2sqrt2)/3) = (-4sqrt2)/9#
#cos 2t = 2/9 - 1 = -7/9#
#tan 2t = (sin 2t)/(cos 2t) = ((-4sqrt2)/9)(-9/7) = (4sqrt2)/7#
Check by calculator.
#cos t = - 1/3# --> t = 109.47 --> #2t = 218^@84# --> tan 2t = 0.808
#(4sqrt2)/7 = (1.41)(4)/7 = 0.808.# OK