We will use rules concerning logarithm :
log_b(a)=ln(a)/ln(b)logb(a)=ln(a)ln(b)
ln(a) + ln(b)= ln(a*b)ln(a)+ln(b)=ln(a⋅b)
aln(b)=ln(b^a)aln(b)=ln(ba)
Here : 5 log_4(a)+48 log_a(4)=a/85log4(a)+48loga(4)=a8
5ln(a)/ln(4)+ln(4^48)/ln(a)=a/85ln(a)ln(4)+ln(448)ln(a)=a8
5ln(a)^2+ln(4)ln(4^48)=(aln(a)ln(4))/85ln(a)2+ln(4)ln(448)=aln(a)ln(4)8
Let X=ln(a)<=>a=e^XX=ln(a)⇔a=eX
5X^2-Xe^Xln(4)/8+48ln(4)^2=05X2−XeXln(4)8+48ln(4)2=0
We can't find any solutions with basic mathematic tools, but because the function f(x)=5ln(x)^2-ln(4)/8xln(x)+48ln(4)^2f(x)=5ln(x)2−ln(4)8xln(x)+48ln(4)2 is continuous on RR_+^(*), and f(255)~=0.92//f(260)~=-3,68, by theorem, there is a solution a in [255,260].
\0/ Here's our answer !