Given that; #5log_4 a + 48log_a 4 = a/8# Find #"a"#?

1 Answer

#a in [255,260]#

Explanation:

We will use rules concerning logarithm :
#log_b(a)=ln(a)/ln(b)#

#ln(a) + ln(b)= ln(a*b)#

#aln(b)=ln(b^a)#

Here : #5 log_4(a)+48 log_a(4)=a/8#

#5ln(a)/ln(4)+ln(4^48)/ln(a)=a/8#

#5ln(a)^2+ln(4)ln(4^48)=(aln(a)ln(4))/8#

Let #X=ln(a)<=>a=e^X#

#5X^2-Xe^Xln(4)/8+48ln(4)^2=0#

We can't find any solutions with basic mathematic tools, but because the function #f(x)=5ln(x)^2-ln(4)/8xln(x)+48ln(4)^2# is continuous on #RR_+^(*)#, and #f(255)~=0.92//f(260)~=-3,68#, by theorem, there is a solution #a in [255,260]#.

\0/ Here's our answer !