Given that one root is 3 times the others for the quadratic equation 3x^2-2x+p=03x22x+p=0, find (a) the value of pp and (b) the two roots ?

1 Answer
May 4, 2018

p=1/4, x=1/6, 1/2p=14,x=16,12

Explanation:

Let the roots be r, 3rr,3r:

a(x-r)(x-3r)=0a(xr)(x3r)=0

ax^2-4arx+3ar^2=0ax24arx+3ar2=0

3x^2-2x+p=ax^2-4arx+3ar^23x22x+p=ax24arx+3ar2

a=3a=3

3x^2-2x+p=3x^2-12rx+9r^23x22x+p=3x212rx+9r2

12r=212r=2

r=1/6=>r=16 3r=1/23r=12

p=9*1/(36)=1/4p=9136=14

Check:

3x^2-2x+1/4=03x22x+14=0
3(x^2-(2/3)x)=-1/43(x2(23)x)=14
3(x^2(-2/3)x+(1/3)^2)=1/3-1/4=1/123(x2(23)x+(13)2)=1314=112
(x-1/3)^2=1/36(x13)2=136
x-1/3=+-1/6x13=±16
x=1/3+-1/6x=13±16
x=1/3-1/6=2/6-1/6=1/6x=1316=2616=16
x=1/3+1/6=2/6+1/6=3/6=1/2x=13+16=26+16=36=12