Given that y= e^-x sinbx, where b is a constant, show that (d^2y)/(dx^2) + 2dy/dx + ( 1 + b^2) y = 0 ?
1 Answer
We seek to show that:
(d^2y)/(dx^2) + 2dy/dx + ( 1 + b^2) y = 0 wherey= e^-x sinbx
Using the product rule, In conjunction with the chain rule, then differentiating
dy/dx = (e^-x)(bcosbx) + (-e^-x)(sinbx)
\ \ \ \ \ \ = be^-x cosbx - e^-x sinbx
\ \ \ \ \ \ = e^-x (bcosbx - sinbx)
And differentiating a second time, we have:
(d^2y)/(dx^2) = e^-x (-b^2sinbx - bcosbx) + (-e^-x) (bcosbx - sinbx)
\ \ \ \ \ \ \ = e^-x (-b^2sinbx - bcosbx - bcosbx + sinbx)
\ \ \ \ \ \ \ = e^-x (-b^2sinbx - 2bcosbx + sinbx)
And so, considering the LHS of the given expression:
LHS = (d^2y)/(dx^2) + 2dy/dx + ( 1 + b^2) y
\ \ \ \ \ \ \ \ = {e^-x (-b^2sinbx - 2bcosbx + sinbx)} +
\ \ \ \ \ \ \ \ \ \ \ \ + 2{e^-x (bcosbx - sinbx)} + ( 1 + b^2) {e^-x sinbx}
\ \ \ \ \ \ \ \ = e^-x {-b^2sinbx - 2bcosbx + sinbx + 2bcosbx
\ \ \ \ \ \ \ \ \ \ \ \ - 2sinbx + ( 1 + b^2)sinbx}
\ \ \ \ \ \ \ \ = e^-x {-b^2sinbx - 2bcosbx + sinbx + 2bcosbx
\ \ \ \ \ \ \ \ \ \ \ \ - 2sinbx + sinbx + b^2sinbx}
\ \ \ \ \ \ \ \ = 0 \ \ \ QED