Given that y= e^-x sinbx, where b is a constant, show that (d^2y)/(dx^2) + 2dy/dx + ( 1 + b^2) y = 0 ?

1 Answer
May 12, 2018

We seek to show that:

(d^2y)/(dx^2) + 2dy/dx + ( 1 + b^2) y = 0 where y= e^-x sinbx

Using the product rule, In conjunction with the chain rule, then differentiating y= e^-x sinbx wrt x we have:

dy/dx = (e^-x)(bcosbx) + (-e^-x)(sinbx)
\ \ \ \ \ \ = be^-x cosbx - e^-x sinbx
\ \ \ \ \ \ = e^-x (bcosbx - sinbx)

And differentiating a second time, we have:

(d^2y)/(dx^2) = e^-x (-b^2sinbx - bcosbx) + (-e^-x) (bcosbx - sinbx)

\ \ \ \ \ \ \ = e^-x (-b^2sinbx - bcosbx - bcosbx + sinbx)

\ \ \ \ \ \ \ = e^-x (-b^2sinbx - 2bcosbx + sinbx)

And so, considering the LHS of the given expression:

LHS = (d^2y)/(dx^2) + 2dy/dx + ( 1 + b^2) y

\ \ \ \ \ \ \ \ = {e^-x (-b^2sinbx - 2bcosbx + sinbx)} +
\ \ \ \ \ \ \ \ \ \ \ \ + 2{e^-x (bcosbx - sinbx)} + ( 1 + b^2) {e^-x sinbx}

\ \ \ \ \ \ \ \ = e^-x {-b^2sinbx - 2bcosbx + sinbx + 2bcosbx
\ \ \ \ \ \ \ \ \ \ \ \ - 2sinbx + ( 1 + b^2)sinbx}

\ \ \ \ \ \ \ \ = e^-x {-b^2sinbx - 2bcosbx + sinbx + 2bcosbx
\ \ \ \ \ \ \ \ \ \ \ \ - 2sinbx + sinbx + b^2sinbx}

\ \ \ \ \ \ \ \ = 0 \ \ \ QED