Given the equilateral triangle inscribed in a square of side s find the ratio of Delta BCR " to " DeltaPRD?

enter image source here

2 Answers
Nov 7, 2016

(DeltaBCR)/(DeltaPRD)=1/2

Explanation:

Considering the figure to be symmetric w.r.t. BD, /_CBR=(90^o-60^o)/2=15^o

and side CR of DeltaBPR is given by

CR=sxxtan15^o=(sqrt3-1)/(sqrt3+1)s, where BC=s.

Area of DeltaBCR=(BCxxCR)/2=sxx(sqrt3-1)/(sqrt3+1)s/2=(sqrt3-1)/(sqrt3+1)s^2/2

Area of DeltaPRD=(DR^2)/2=((s-CR)^2)/2=(s-(sqrt3-1)/(sqrt3+1)s)^2/2

(1-(sqrt3-1)/(sqrt3+1))^2s^2/2=((sqrt3+1-sqrt3+1)/(sqrt3+1))^2s^2/2=4/(sqrt3+1)^2s^2/2

Hence (DeltaBCR)/(DeltaPRD)=((sqrt3-1)/(sqrt3+1)s^2/2)/(4/(sqrt3+1)^2s^2/2)=((sqrt3-1)/(sqrt3+1))/(4/(sqrt3+1)^2)=((sqrt3-1)(sqrt3+1)^2)/(4(sqrt3+1))

= ((sqrt3-1)(sqrt3+1))/4=(3-1)/4=2/4=1/2

Nov 8, 2016

(DeltaBCR)/(DeltaPRD)=1/2

Explanation:

As per given figure DeltaBCR ~=DeltaABP
Since /_BCR=/_ABP=90^@->"angle of a square"

"hypotenuse "BR ="hypotenuse "BP
( sides of equilateral DeltaBRP)

AB=BC->"sides of square ABCD"

So /_CBR=/_ABP

Using trigonometry

In triangle BCR
/_CBR=/_ABP=1/2(/_ABC-/_PBR)

=(90^@-60^@)/2=15^@

and /_BRC=90^@-15^@=75^@

If the length of each side of the equilareral triangle BPR be a,then
BC=asin/_CBR=acos15^@

CR=asin/_CBR=asin15^@

For DeltaPRD

/_PRD=(180-/_BRC-/_BRP)

=180^@-75^@-45^@=45^@

So PD=DR=PRcos45^@=acos45^@=asin45^@

Now

(DeltaBCR)/(DeltaPRD)

=(cancel(1/2)xxCRxxBC)/(cancel(1/2)xxPDxxDR)

=(asin15^@xxcos15^@)/(acos45^@xxasin45^@)

=(2cos15^@xxsin15^@)/(2cos45^@xxsin45^@)

=sin30^@/sin90^@

=sin30^@=1/2

Without using trigonometry

We have shown above DeltaBCR ~=DeltaABP

So CR=AP

Now

DR=CD-CR=AD-AP=DP

Applying Pythagoras theorem for DeltaPRD we get

PR^2=DP^2+DR^2=2DR^2

=>BR^2=2DR^2->"since "PR=BR

Niw applying Pythagoras theorem for DeltaBRC we get

BR^2=BC^2+CR^2

So 2DR^2=BC^2+CR^2

=>2DR^2=BC^2+CR^2

=>2DR^2=CD^2+CR^2

=>2DR^2=(CR+DR)^2+CR^2

=>2DR^2=CR^2+DR^2+2CR*DR+CR^2

=>2DR^2-DR^2=2CR^2+2CR*DR

=>DR^2=2CR^2+2CR*DR

=>1/2*DR^2=CR^2+CR*DR

=>1/2*DR^2=CR(CR+DR)

=>1/2*DR*PD=2*1/2*CR*CD

=>1/2*DR*PD=2*1/2*CR*BC

=>DeltaPRD=2*DeltaBCR

=>(DeltaBCR)/(DeltaPRD)=1/2