As per given figure DeltaBCR ~=DeltaABP
Since /_BCR=/_ABP=90^@->"angle of a square"
"hypotenuse "BR ="hypotenuse "BP
( sides of equilateral DeltaBRP)
AB=BC->"sides of square ABCD"
So /_CBR=/_ABP
Using trigonometry
In triangle BCR
/_CBR=/_ABP=1/2(/_ABC-/_PBR)
=(90^@-60^@)/2=15^@
and /_BRC=90^@-15^@=75^@
If the length of each side of the equilareral triangle BPR be a,then
BC=asin/_CBR=acos15^@
CR=asin/_CBR=asin15^@
For DeltaPRD
/_PRD=(180-/_BRC-/_BRP)
=180^@-75^@-45^@=45^@
So PD=DR=PRcos45^@=acos45^@=asin45^@
Now
(DeltaBCR)/(DeltaPRD)
=(cancel(1/2)xxCRxxBC)/(cancel(1/2)xxPDxxDR)
=(asin15^@xxcos15^@)/(acos45^@xxasin45^@)
=(2cos15^@xxsin15^@)/(2cos45^@xxsin45^@)
=sin30^@/sin90^@
=sin30^@=1/2
Without using trigonometry
We have shown above DeltaBCR ~=DeltaABP
So CR=AP
Now
DR=CD-CR=AD-AP=DP
Applying Pythagoras theorem for DeltaPRD we get
PR^2=DP^2+DR^2=2DR^2
=>BR^2=2DR^2->"since "PR=BR
Niw applying Pythagoras theorem for DeltaBRC we get
BR^2=BC^2+CR^2
So 2DR^2=BC^2+CR^2
=>2DR^2=BC^2+CR^2
=>2DR^2=CD^2+CR^2
=>2DR^2=(CR+DR)^2+CR^2
=>2DR^2=CR^2+DR^2+2CR*DR+CR^2
=>2DR^2-DR^2=2CR^2+2CR*DR
=>DR^2=2CR^2+2CR*DR
=>1/2*DR^2=CR^2+CR*DR
=>1/2*DR^2=CR(CR+DR)
=>1/2*DR*PD=2*1/2*CR*CD
=>1/2*DR*PD=2*1/2*CR*BC
=>DeltaPRD=2*DeltaBCR
=>(DeltaBCR)/(DeltaPRD)=1/2