Given two points (4i, -2j, 3k) and (i, j, -3k), how do you find a unit vector parallel to the line segment AB?

1 Answer
Dec 20, 2016

hat(vec(AB))=(sqrt6/6)(-veci+vecj-2veck)ˆAB=(66)(i+j2k)

Explanation:

assuming vec(OA)=((4),(-2),(3))" "&" "vec(OB)=((1),(1),(-3))

vec(AB)=vec(AO)+vec(OB)

vec(AB)=-vec(OA)+vec(OB)

vec(AB)=-((4),(-2),(3))+((1),(1),(-3))

vec(AB)=((-4+1),(2+1),(-3-3))

vec(AB)=((-3),(3),(-6))

unit vector parralel to " "vec(AB)

hat(vec(AB))=vec(AB)/|vec(AB)|

|vec(AB)|=sqrt(3^2+3^2+6^2)=3sqrt6

hat(vec(AB))=(1/(3sqrt6))((-3),(3),(-6))

hat(vec(AB))=(1/(3sqrt6))(-3veci+3vecj-6veck)

hat(vec(AB))=(sqrt6/18)(-3veci+3vecj-6veck)

cancelling a factor of 3 we have

hat(vec(AB))=(sqrt6/6)(-veci+vecj-2veck)