HHow do I integrate f(x)= x^2 e^(-5x)f(x)=x2e5x by parts?

1 Answer
Jan 28, 2015

Here you have to integrate by parts twice to "kill" your x^2x2.
You start with the first "by parts" as:
intx^2e^(-5x)dx=x^2*e^(-5x)/(-5)-inte^(-5x)/(-5)*2xdx=x2e5xdx=x2e5x5e5x52xdx=
Which can be written as:
=x^2*e^(-5x)/(-5)+1/5inte^(-5x)*2xdx==x2e5x5+15e5x2xdx=
Now you go for another integration by parts and get:
=x^2*e^(-5x)/(-5)+1/5[e^(-5x)/(-5)*2x-inte^(-5x)/(-5)*2dx]==x2e5x5+15[e5x52xe5x52dx]=
=x^2*e^(-5x)/(-5)+1/5[e^(-5x)/(-5)*2x+2/5inte^(-5x)dx]==x2e5x5+15[e5x52x+25e5xdx]=
=x^2*e^(-5x)/(-5)+1/5e^(-5x)/(-5)*2x+1/5*2/5e^(-5x)/(-5)==x2e5x5+15e5x52x+1525e5x5=

=e^(-5x)[-x^2/5-(2x)/25-2/125]+c=e5x[x252x252125]+c