How can I integrate sin^2 xcosxsin2xcosx??
4 Answers
The integral is equal to
Explanation:
Let
I = int u^2 cosx * (du)/cosxI=∫u2cosx⋅ducosx
I = int u^2 duI=∫u2du
I = 1/3u^3 + CI=13u3+C
I = 1/3sin^3x + CI=13sin3x+C
Hopefully this helps!
Explanation:
Given:
Use
Let
Is an inmediate integral. See below
Explanation:
Explanation:
Make an appropriate u sub: