How can I integrate sin^2 xcosxsin2xcosx??

4 Answers
Mar 29, 2018

The integral is equal to 1/3sin^3x + C13sin3x+C

Explanation:

Let u = sinxu=sinx. Then du = cosx dxdu=cosxdx and dx = (du)/cosxdx=ducosx.

I = int u^2 cosx * (du)/cosxI=u2cosxducosx

I = int u^2 duI=u2du

I = 1/3u^3 + CI=13u3+C

I = 1/3sin^3x + CI=13sin3x+C

Hopefully this helps!

Mar 29, 2018

1/3 sin^3x + C13sin3x+C

Explanation:

Given: int sin^2x cos x dxsin2xcosxdx

Use uu-substitution.
Let u = sin x; " "du = cos x dx; " "dx = (du)/(cos x)u=sinx; du=cosxdx; dx=ducosx

int sin^2x cos x dx = int u^2 cancel(cos x) (du)/(cancel(cos x)) = int u^2 du = 1/3 u^3 +C

int sin^2x cos x dx = 1/3 sin^3x + C

Mar 29, 2018

Is an inmediate integral. See below

Explanation:

intsin^2xcosxdx=1/3sin^3x+C because the derivative of sin^3x is 3sin^2xcosx. To remove 3 we need to insert 1/3 before

Mar 29, 2018

1/3sin^3 x + c

Explanation:

int sin^2 x cosx dx

Make an appropriate u sub:

u = sinx

du = cosx dx

=> int u^2 du

=> 1/3u^3 +c

=> 1/3sin^3 x + c