How can I simplify this expression? Sin(ß)Cos(-ß)Csc(ß)

1 Answer
Mar 25, 2018

It simplifies to cosbetacosβ.

Explanation:

Use the reciprocal definition, then the cosine difference formula:

color(white)=sinbetacos(-beta)cscbeta=sinβcos(β)cscβ

=sinbetacos(-beta)*1/sinbeta=sinβcos(β)1sinβ

=color(red)cancelcolor(black)sinbeta cos(-beta)*color(red)cancelcolor(black)(1/sinbeta)

=cos(-beta)

=cos(0-beta)

=cos0cosbeta+sin0sinbeta

=1*cosbeta+0*sinbeta

=1*cosbeta

=cosbeta

That's it. Hope this helped!