Given
cosA+cosB+cosC=0cosA+cosB+cosC=0
=>cosA+cosB=-cosC⇒cosA+cosB=−cosC
=>(cosA+cosB)^3=-cos^3C⇒(cosA+cosB)3=−cos3C
=>cos^3A+cos^3B+3cosAcosB(cosA+cosB)=-cos^3C⇒cos3A+cos3B+3cosAcosB(cosA+cosB)=−cos3C
=>cos^3A+cos^3B+3cosAcosB(-cosC)=-cos^3C⇒cos3A+cos3B+3cosAcosB(−cosC)=−cos3C
=>cos^3A+cos^3B+cos^3C=3cosAcosBcosC⇒cos3A+cos3B+cos3C=3cosAcosBcosC
=>4cos^3A+4cos^3B+4cos^3C=12cosAcosBcosC⇒4cos3A+4cos3B+4cos3C=12cosAcosBcosC
Now
cos3A+cos3B+cos3Bcos3A+cos3B+cos3B
=4cos^3A-3cosA+4cos^3B-3cosB+4cos^3C-3cosC=4cos3A−3cosA+4cos3B−3cosB+4cos3C−3cosC
=4cos^3A+4cos^3B+4cos^3C-3(cosA+cosB+cosC)=4cos3A+4cos3B+4cos3C−3(cosA+cosB+cosC)
=12cosAcosBcosC+3*0=12cosAcosBcosC+3⋅0
=12cosAcosBcosC=12cosAcosBcosC