How can I solve the problem?
How to find#dy/(dx)# of the mentioned equation?
#xsqrt(1+y)+ysqrt(1+x)=0#
How to find
1 Answer
Dec 28, 2017
Explanation:
#"differentiate "color(blue)"implicitly with respect to x"#
#"differentiate "xsqrt(1+y)" and "ysqrt(1+x)" using "#
#"the "color(blue)"product rule"#
#rArrx(1+y)^(1/2)+y(1+x)^(1/2)=0#
#rArr(x . 1/2(1+y)^(-1/2).dy/dx+(1+y)^(1/2))#
#+(y . 1/2(1+x)^(-1/2)+(1+x)^(1/2).dy/dx)=0#
#rArr1/2x(1+y)^(-1/2)dy/dx+(1+x)^(1/2)dy/dx#
#=-1/2y(1+x)^(-1/2)-(1+y)^(1/2)#
#rArrdy/dx(1/2x(1+y)^(-1/2)+(1+x)^(1/2))#
#=-1/2(y(1+x)^(-1/2)+2(1+y)^(1/2))#
#rArrdy/dx=-(cancel(1/2)(y(1+x)^(-1/2)+2(1+y)^(1/2)))/(cancel(1/2)(x(1+y)^(-1/2)+2(1+x)^(1/2))#
#color(white)(rArrdy/dx)=-(y/sqrt(1+x)+2sqrt(1+y))/(x/sqrt(1+y)+2sqrt(1+x))#