How can I use integration by parts to find int_{0}^{5}te^{-t}dt50tetdt?

1 Answer
Jan 25, 2015

You can do this:
enter image source here
Using this approach you should get:
int_0^5(te^(-t))dt=-e^-t*t-int(-e^-t)*1dt=50(tet)dt=ett(et)1dt=
=-e^-t*t-e^-t==ettet=
=-e^(-t)(t+1)=et(t+1)
Now you must use your extrema: 0 and 50and5
You get:
-e^-5*(5+1)-[-e^0*(0+1)]=e5(5+1)[e0(0+1)]=
=1-6e^-5=16e5