Let's say we looked at tan4xtan4x. We can use the following identities:
tan4x = (sin4x)/(cos4x)tan4x=sin4xcos4x
sin2x = 2sinxcosxsin2x=2sinxcosx
cos2x = cos^2x - sin^2xcos2x=cos2x−sin2x
=> (2sin2xcos2x)/(cos^2 2x - sin^2 2x)⇒2sin2xcos2xcos22x−sin22x
= (4sinxcosx(cos^2x - sin^2x))/((cos^2x - sin^2x)^2 - (2sinxcosx)^2)=4sinxcosx(cos2x−sin2x)(cos2x−sin2x)2−(2sinxcosx)2
= (4sinxcosx(cos^2x - sin^2x))/((cos^2x - sin^2x)^2 - 4sin^2xcos^2x)=4sinxcosx(cos2x−sin2x)(cos2x−sin2x)2−4sin2xcos2x
= color(blue)((4sinxcosx(1 - 2sin^2x))/((1 - 2sin^2x)^2 - 4sin^2xcos^2x))=4sinxcosx(1−2sin2x)(1−2sin2x)2−4sin2xcos2x
I don't know if you can get it any simpler; it's all sinxsinx and cosxcosx now, though.
You could also have used:
tan(2x+2x) = (tan(2x)+tan(2x))/(1-tan(2x)tan(2x))tan(2x+2x)=tan(2x)+tan(2x)1−tan(2x)tan(2x)
= (2tan(2x))/(1-tan^2(2x))=2tan(2x)1−tan2(2x)
but that's gonna be uglier to simplify (unless you stop here).
sec(2x)sec(2x) is much simpler.
= 1/(cos(2x)) = 1/(cos^2x - sin^2x) = color(blue)(1/(1-2sin^2x))=1cos(2x)=1cos2x−sin2x=11−2sin2x