How can tan 4x be simplified or sec 2x?

1 Answer
Aug 7, 2015

Let's say we looked at tan4xtan4x. We can use the following identities:

tan4x = (sin4x)/(cos4x)tan4x=sin4xcos4x

sin2x = 2sinxcosxsin2x=2sinxcosx
cos2x = cos^2x - sin^2xcos2x=cos2xsin2x

=> (2sin2xcos2x)/(cos^2 2x - sin^2 2x)2sin2xcos2xcos22xsin22x

= (4sinxcosx(cos^2x - sin^2x))/((cos^2x - sin^2x)^2 - (2sinxcosx)^2)=4sinxcosx(cos2xsin2x)(cos2xsin2x)2(2sinxcosx)2

= (4sinxcosx(cos^2x - sin^2x))/((cos^2x - sin^2x)^2 - 4sin^2xcos^2x)=4sinxcosx(cos2xsin2x)(cos2xsin2x)24sin2xcos2x

= color(blue)((4sinxcosx(1 - 2sin^2x))/((1 - 2sin^2x)^2 - 4sin^2xcos^2x))=4sinxcosx(12sin2x)(12sin2x)24sin2xcos2x

I don't know if you can get it any simpler; it's all sinxsinx and cosxcosx now, though.

You could also have used:
tan(2x+2x) = (tan(2x)+tan(2x))/(1-tan(2x)tan(2x))tan(2x+2x)=tan(2x)+tan(2x)1tan(2x)tan(2x)

= (2tan(2x))/(1-tan^2(2x))=2tan(2x)1tan2(2x)

but that's gonna be uglier to simplify (unless you stop here).

sec(2x)sec(2x) is much simpler.

= 1/(cos(2x)) = 1/(cos^2x - sin^2x) = color(blue)(1/(1-2sin^2x))=1cos(2x)=1cos2xsin2x=112sin2x