How can you factor #f(x)=x^4-12x^3+59x^2-138x+130#?
1 Answer
Oct 17, 2017
#x^4-12x^3+59x^2-138x+130#
#=(x^2-6x+10)(x^2-6x+13)#
#=(x-3-i)(x-3+i)(x-3-2i)(x-3+2i)#
Explanation:
Given:
#f(x) = x^4-12x^3+59x^2-138x+130#
Simplify the quartic by noting the similarity to
#x^4-12x^3+59x^2-138x+130#
#=x^4-12x^3+54x^2-108x+81+5x^2-30x+45+4#
#=(x-3)^4+5(x-3)^2+4#
#=((x-3)^2+1)((x-3)^2+4) color(grey)(= (x^2-6x+10)(x^2-6x+13))#
#=((x-3)^2-i^2)((x-3)^2-(2i)^2)#
#=(x-3-i)(x-3+i)(x-3-2i)(x-3+2i)#