How do evaluate the integral below?

#int(cosx+sinx)^2 cos2x dx#

1 Answer
Oct 4, 2017

#(1+sin2x)^2/4+C#

Explanation:

1) I expanded #(cosx+sinx)^2# as #1+sin2x#.

2) I used #u=1+sin2x# and #du=2cos2x*dx# transform.

3) I took integral and made inverse transform.

#int (cosx+sinx)^2*cos2x*dx#

=#int (1+sin2x)*cos2x*dx#

=#int 1/2*(1+sin2x)*2cos2x*dx#

=#int 1/2*u*du#

=#u^2/4+C#

=#(1+sin2x)^2/4+C#