How do I convert the equation #-9x^2 +4y^2 +72x-16y =164# to standard form?

1 Answer
Sep 25, 2014

We need to complete the square for the #x and x^2# terms and then for the #y and y^2# terms.

First, reorder the terms

#-9x^2+72x+4y^2-16y=164#

Factor out a #-9# from the first 2 terms.
*Remember to change the signs.

Factor out a #4# from the last 2 terms.

#-9(x^2-8x)+4(y^2-4y)=164#

Work with the #x# term.

#(-8/2)^2=(-4)^2=16#

Remember that we factor out #-9# so, we have to add #-9*4=-36# to the right side of the equation.

Work with the #y# term.

#(-4/2)^2=(-2)^2=4#

Remember that we factor out #4# so, we have to add #4*4=16# to the right side of the equation.

#-9(x^2-8x+16)+4(y^2-4y+4)=164-144+16#

Factor:

#x^2-8x+16=>(x-4)^2 => # Perfect square trinomial

#y^2-4y+4=>(y-2)^2 =># Perfect square trinomial

#-9(x-4)^2+4(y-2)^2=164-144+16#

#-9(x-4)^2+4(y-2)^2=36#

#(-9(x-4)^2)/36+(4(y-2)^2)/36=36/36#

#-((x-4)^2)/4+((y-2)^2)/9=1#