How do I derive #y=sqrt(9+x^2)+sqrt(x^2-10x+41)#?

1 Answer
Mar 17, 2018

#color(blue)(=(x)/(sqrt(9+x^2))+(x-5)/sqrt(x^2-10x+41))#

Explanation:

We need to use the chain rule here:

#dy/dx=dy/(du)*(du)/dx#

In order not to use two variables when substituting, we can differentiate in parts:

#dy/dx# is distributive over the sum, so:

#dy/dx(sqrt(9+x^2)+sqrt(x^2-10x+41))#

#=dy/dx(sqrt(9+x^2))+dy/dx(sqrt(x^2-10x+41))#

For the first term:

Rewriting

# sqrt(9+x^2)=(9+x^2)^(1/2)#

let: #u=9+x^2#

#:.#

#y=u^(1/2)#

Using the chain rule:

#dy/dx=1/2u^(-1/2)*(2x)=(2x)/(2sqrt(u))=(x)/(sqrt(9+x^2))#

For the second term:

#dy/dx=dy/(dv)*(dv)/dx#

Rewriting #sqrt(x^2-10x+41)=(x^2-10x+41)^(1/2)#

Let: #v=x^2-10x+41#

Using the chain rule:

#dy/dx=1/2v^(-1/2)*(2x-10)=(2x-10)/(2sqrt(v))=(x-5)/sqrt(x^2-10x+41)#

Combining the two parts:

#dy/dx=color(blue)((x)/(sqrt(9+x^2))+(x-5)/sqrt(x^2-10x+41))#

I would leave this in this form. If you add the fractions it will make for a messy expression