How do I determine whether a hyperbola opens horizontally or vertically? Precalculus Geometry of a Hyperbola Identify Critical Points 1 Answer seph Oct 12, 2014 Make the equation be in the form #(x - h)^2/a^2 - (y - k)^2/b^2 = 1# or #(y - k)^2/a^2 - (x - h)^2/b^2 = 1# If #x# is on front, the hyperbola opens horizontally If #y# is on front, the hyperbola opens vertically Answer link Related questions What are the critical points of a hyperbola? What are the foci of a hyperbola? What do #h# and #k# represent with respect to a hyperbola? What do #a# and #b# represent in the equation of a hyperbola? What is the transverse axis of a hyperbola? How do I determine the asymptotes of a hyperbola? What is meant by the eccentricity of a hyperbola? How do you find the center and vertex for #9x^2-16y^2+18x+160y-247=0#? How do you find the center and vertex for #-x^2 + y^2 – 2x – 2y – 9 = 0#? How do you find the center and vertex for #9x^2 – y^2 – 36x + 4y + 23 = 0#? See all questions in Identify Critical Points Impact of this question 22437 views around the world You can reuse this answer Creative Commons License