How do I differentiate #y=(tanx)^(x^2)# using natural logarithms?

2 Answers
Sep 11, 2017

#dy/dx = (x^2secxcscx+2xlntanx)(tanx)^(x^2)#

Explanation:

#y = (tanx)^(x^2)#

#lny = x^2lntanx#

#1/ydy/dx = x^2 sec^2x/tanx +2xlntanx=x^2secxcscx+2xlntanx#

#dy/dx = y(x^2secxcscx+2xlntanx) = (x^2secxcscx+2xlntanx)(tanx)^(x^2)#

Sep 11, 2017

#dy/dx=(2x(ln(tanx))+x^2(sec^2x/tanx))*(tanx)^(x^2)#

Explanation:

to diffrentiate, we usually take:
#y=(tanx)^(x^2)#
#d/dxy=d/dx(tanx)^(x^2)#

But this time since x is in the power, we are going to use log rule before starting with differentiation:

We begin by taking #ln#(natural log) of both sides:

#lny=ln(tan^x)^(x^2)#

applying the log rule:
#loga^x=x*loga#
we get:
#lny=x^2ln(tanx)#

Differentiating both sides with respect to #x#
#d/(dx)lny=d/(dx)x^2ln(tanx)#

Using implicit differentiation's rule (#d/dx f(y)=d/dy (f(y) *dy/dx#):

#d/dylny*d/(dx)y=1/y*dy/dx# (since derrivative of 1/x=x)

#rarr 1/y*d/dxy= d/(dx)x^2ln(tanx)#

multiplying both sides by y to isolate dy/dx:
#1/y*d/dxy*y=(d/(dx)x^2ln(tanx))*y#
#rarrdy/dx=(d/(dx)x^2ln(tanx))*y#

we use chain rule to differentiate the right hand side:
#dy/dx=(d/(dx)(x^2)(ln(tanx))+x^2(d/dx(ln(tanx)))*y#
#dy/dx=(2x(ln(tanx))+x^2(1/tanx*sec^2x))*y#
#dy/dx=(2x(ln(tanx))+x^2(sec^2x/tanx))*y#

substituting y by its value in terms of x from given:
#y=(tanx)^(x^2)#
#rarr dy/dx=(2x(ln(tanx))+x^2(sec^2x/tanx))*(tanx)^(x^2)#

simplifying the answer will give you:
#2x*(tanx)^(x^2)*ln(tanx)+x(csc2x)#