How do I differentiate y=(tanx)^(x^2) using natural logarithms?

2 Answers
Sep 11, 2017

dy/dx = (x^2secxcscx+2xlntanx)(tanx)^(x^2)

Explanation:

y = (tanx)^(x^2)

lny = x^2lntanx

1/ydy/dx = x^2 sec^2x/tanx +2xlntanx=x^2secxcscx+2xlntanx

dy/dx = y(x^2secxcscx+2xlntanx) = (x^2secxcscx+2xlntanx)(tanx)^(x^2)

Sep 11, 2017

dy/dx=(2x(ln(tanx))+x^2(sec^2x/tanx))*(tanx)^(x^2)

Explanation:

to diffrentiate, we usually take:
y=(tanx)^(x^2)
d/dxy=d/dx(tanx)^(x^2)

But this time since x is in the power, we are going to use log rule before starting with differentiation:

We begin by taking ln(natural log) of both sides:

lny=ln(tan^x)^(x^2)

applying the log rule:
loga^x=x*loga
we get:
lny=x^2ln(tanx)

Differentiating both sides with respect to x
d/(dx)lny=d/(dx)x^2ln(tanx)

Using implicit differentiation's rule (d/dx f(y)=d/dy (f(y) *dy/dx):

d/dylny*d/(dx)y=1/y*dy/dx (since derrivative of 1/x=x)

rarr 1/y*d/dxy= d/(dx)x^2ln(tanx)

multiplying both sides by y to isolate dy/dx:
1/y*d/dxy*y=(d/(dx)x^2ln(tanx))*y
rarrdy/dx=(d/(dx)x^2ln(tanx))*y

we use chain rule to differentiate the right hand side:
dy/dx=(d/(dx)(x^2)(ln(tanx))+x^2(d/dx(ln(tanx)))*y
dy/dx=(2x(ln(tanx))+x^2(1/tanx*sec^2x))*y
dy/dx=(2x(ln(tanx))+x^2(sec^2x/tanx))*y

substituting y by its value in terms of x from given:
y=(tanx)^(x^2)
rarr dy/dx=(2x(ln(tanx))+x^2(sec^2x/tanx))*(tanx)^(x^2)

simplifying the answer will give you:
2x*(tanx)^(x^2)*ln(tanx)+x(csc2x)