How do I evaluate cos(pi/5) without using a calculator?

2 Answers

Cos (π /5) = cos 36° = (5 + 1)/4.

Explanation:

If θ = π/10, then 5θ = π/2 cos3θ = sin2θ.[ cos (π /2 - α) = sinα}.
4cos3 θ - 3cosθ = 2sinθcosθ 4 cos2θ - 3 =2 sin θ.
4 ( 1 - sin2 θ) - 3 = 2 sinθ. 4sin2 θ+2sinθ - 1 = 0
sinθ =( 5 - 1 ) /4.
Now cos 2θ = cos π/5 = 1 - 2sin2 θ, gives the result.

Feb 13, 2016

cos(π5)=5+14.

Explanation:

Let a=cos(π5), b=cos(2π5). Thus cos(4π5)=a. From the double angle formulas:

b=2a21
a=2b21

Subtracting,

a+b=2(a2b2)=2(a+b)(ab)

a+b is not zero, as both terms are positive, so ab must be 12. Then

a12=2a21
4a22a1=0

and the only positive root is

a=cos(π5)=5+14.

And b=cos(2π5)=a12=514.