How do I evaluateint_0^(pi/2) x sin^2(x)dxπ20xsin2(x)dx?

1 Answer
Jan 30, 2015

The answer is: 1/16(pi^2+4)116(π2+4)

The first thing to do is to lower the degree of the function sinus with the Half-angle formula:

sinx=sqrt((1-cos2x)/2sinx=1cos2x2.

So the integral becomes:

int_0^(pi/2)x(1-cos2x)/2dx=1/2int_0^(pi/2)(x-xcos2x)dx=1/2[int_0^(pi/2)xdx-int_0^(pi/2)xcos2xdx]π20x1cos2x2dx=12π20(xxcos2x)dx=12[π20xdxπ20xcos2xdx].

To do the first integral it is sufficient to remember the law:

intx^ndx=x^(n+1)/(n+1)+cxndx=xn+1n+1+c,

so:

int_0^(pi/2)xdx=[x^2/2]_0^(pi/2)=[(pi^2/4)/2-0/2]=pi^2/8π20xdx=[x22]π20=π24202=π28

The second integral can be done using the theorem of the integration by parts, that says:

intf(x)g'(x)dx=f(x)g(x)-intg(x)f'(x)dx

We can assume that f(x)=x and g'(x)dx=cos2xdx.

To find g(x), it is sufficient to remember this law:

g(x)=intcos(h(x))h'(x)dx=sin(h(x))+c,

where h(x)=2x, and h'(x)=2,

So:

g(x)=intcos2xdx=1/2intcos2x.2dx=1/2sin2x.

and f'(x)=1

So:

int_0^(pi/2)xcos2xdx=[x*1/2sin2x]_0^(pi/2)-int_0^(pi/2)1*1/2sin2xdx=

[pi/2*1/2sin2(pi/2)-0]-1/2[-(cos2x)/2]_0^(pi/2)=[pi/4sinpi+1/2(cos2(pi/2))/2-1/2cos0/2]=[0-1/4-1/4]=-1/2.

I remember that intsin2xdx=-(cos2x)/2, done like before with intcos2xdx=(sin2x)/2

Final count:

1/2(pi^2/8+1/2)=1/16(pi^2+4)