How do I evaluate int(ln(3x))^2 dx(ln(3x))2dx?

1 Answer
Jan 31, 2015

Using Integration by substitution I set: ln(3x)=tln(3x)=t so:
3x=e^t3x=et
x=e^t/3x=et3 and
dx=1/3e^tdtdx=13etdt

Your integral becomes:

intt^2*1/3e^tdt=t213etdt=

Which can now be solved by parts (twice).

By parts you have:

intf(x)*g(x)dx=F(x)*g(x)-intF(x)*g'(x)dx

Where:

F(x)=intf(x)dy
g'(x) is the derivative of g(x)
We can choose:
f(x)=e^t
g(x)=t^2

The integral becomes:

intt^2*1/3e^tdt=1/3[e^t*t^2-inte^t2tdt]= by parts again:
=1/3[e^t*t^2-e^t*2t+inte^t*2dt]=
1/3[e^t*t^2-e^t*2t+2*e^t]=
1/3e^t(t^2-2t+2)
but ln(3x)=t so going back to x:
=1/3*3x(ln^2(3x)-2ln(3x)+2)+c
=x(ln^2(3x)-2ln(3x)+2)+c