How do I evaluate 20x25dx?

1 Answer
Jun 28, 2018

20x25dx=52x4x2154ln(2|x|+4x21)+C

Explanation:

Substitute x=12sect with t(0,π2), dx=12secttantdt:

20x25dx=1220(sect2)25secttantdt

20x25dx=125sec2t5secttantdt

20x25dx=52sec2t1secttantdt

Use now the trigonometric identity:

sec2t1=tant2t

and as tanx>0 for t(0,π2):

sec2t1=tant

Then:

20x25dx=52secttan2tdt

and using the same identity:

20x25dx=52sect(sec2t1)dt

20x25dx=52sec3tdt52sectdt

Solve now the integrals:

sect=ln|sect+tant|+C

and:

sec3tdt=sectddt(tant)dt

Integrate by parts:

sec3tdt=secttanttantddt(sect)dt

sec3tdt=secttantsecttan2tdt

sec3tdt=secttantsect(sec2t1)dt

sec3tdt=secttantsec3tdt+sectdt

Solve now for the original integral:

2sec3tdt=secttant+sectdt

sec3tdt=secttant2+12sectdt

sec3tdt=secttant2+12ln|sect+tant|+C

Then:

20x25dx=54secttant54ln|sect+tant|+C

Undo the substitution:

tant=sec2t1=4x21

sect=2x

so:

20x25dx=52x4x2154ln(2|x|+4x21)+C