How do I evaluate dxex(3ex+2)?

1 Answer
Jun 18, 2018

The answer is =12ex34x+34ln(3ex+2)+C

Explanation:

Let ex=u, , du=exdx

Therefore, the integral is

I=dxex(3ex+2)=due2x(3ex+2)

=duu2(3u+2)

Perform the decomposition into partial fractions

1u2(3u+2)=Au2+Bu+C3u+2

=A(3u+2)+Bu(3u+2)+Cu2u2(3u+2)

The denominator is the same, compare the numerators

1=A(3u+2)+Bu(3u+2)+Cu2

Let u=0, , 1=2A, , A=12

Coefficients of u

0=3A+2B, , B=32A=34

Coefficients of u2

0=3B+C, , C=3B=94

Therefore,

1u2(3u+2)=12u2+34u+943u+2

So,

duu2(3u+2)=12duu234duu+94du3u+2

=12u34lnu+34ln(3u+2)

=12ex34ln(ex)+34ln(3ex+2)+C

=12ex34x+34ln(3ex+2)+C