How do I evaluate 36+9x2dx?

1 Answer
Feb 15, 2015

The answer is: 32x4+x2+6arcsinh(x2)+c

First of all:

36+9x2dx=34+x2dx and now we have to substitute:

x=2sinhtdx=2coshtdt.

So:

34+x2dx=34+4sinh2t2coshtdt=

=321+sinh2t2coshtdt=12cosh2tdt=

=12cosh2t+12dt=6sinh2t2+6t+c=

=32sinhtcosht+6t+c=

Now: sinht=x2, t=arcsinh(x2)

since cosht=1+sinh2t, than cosht=1+x24=

=4+x24=124+x2

So:

I=6x2124+x2+6arcsinh(x2)+c=

=32x4+x2+6arcsinh(x2)+c