How do I evaluate the integral ∫x√6−xdx? Calculus Techniques of Integration Integration by Parts 1 Answer Gió Mar 1, 2015 I would set : 6−x=t2 so: x=6−t2 and dx=−2tdt Substituting: ∫6−t2t(−2t)dt=∫(−12+2t2)dt=−12t+2t33+c Going back to x: =−12√6−x+23(6−x)√6−x+c Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2181 views around the world You can reuse this answer Creative Commons License