First, we can factor (x^2 +3x - 4) as: (x + 4)(x - 1)
Therefore: f * g is:
f * g = f(x) xx g(x) = (x^2 + 3x - 4)(x + 4) =
(x + 4)(x - 1)(x + 4) = (x + 4)^2(x - 1)
Or, we can expand (x^2 + 3x - 4)(x + 4) as:
f * g = (x^2 + 3x - 4)(x + 4)
f * g = (x^2 xx x) + (3x xx x) - (4 xx x) + (x^2 xx 4) + (3x xx 4) - (4 xx + 4)
f * g = x^3 + 3x^2 - 4x + 4x^2 + 12x - 16
f * g = x^3 + 3x^2 + 4x^2 - 4x+ 12x - 16
f * g = x^3 + 7x^2 + 8x - 16 or f * g = (x + 4)^2(x - 1)
Then, f/g is:
f/g = f(x)/g(x) = (x^2 + 3x - 4)/(x + 4) =
((x + 4)(x - 1))/(x + 4) = (color(red)(cancel(color(black)((x + 4))))(x - 1))/color(red)(cancel(color(black)(x + 4)))
f/g = x - 1
However, because we cannot divide by zero we must find the exclusions:
x + 4 != 0 therefore x != -4
f/g = x - 1 where x != - 4