How do I find missing values in binomial expansions?

I have the equation (1+2x)^a=b+6x+12x^c+dx^3, an I am asked to find the values of a, b, c, and d. How do I find these values?

1 Answer
Jun 25, 2018

See a solution process below:

Explanation:

(1 + 2x)^color(red)(a) = color(blue)(b) + 6x +12x^color(green)(c) + color(purple)(d)x^3

Because the large exponent on the right side of the equation is 3 then color(red)(a) will equal color(red)(3):

(1 + 2x)^color(red)(3) = color(blue)(b) + 6x +12x^color(green)(c) + color(purple)(d)x^3

The constant will be 1^3 = 1 therefore: color(blue)(b) will be color(blue)(1)

(1 + 2x)^color(red)(3) = color(blue)(1) + 6x +12x^color(green)(c) + color(purple)(d)x^3

Because this is a binomial the exponent color(green)(c) will be color(green)(2)

(1 + 2x)^color(red)(3) = color(blue)(1) + 6x +12x^color(green)(2) + color(purple)(d)x^3

The coefficient of the x term on the left side of the equation will be cube: 2^3 = 8 therefore color(purple)(d) will be color(purple)(8)

(1 + 2x)^color(red)(3) = color(blue)(1) + 6x +12x^color(green)(2) + color(purple)(8)x^3