How do I find the orthogonal projection of a vector?

1 Answer
Oct 19, 2014

The orthogonal projection of #vec{a}# onto #vec{b}# can be found by

#(vec{a}cdot vec{b}/|vec{b}|)vec{b}/|vec{b}|={vec{a}cdot vec{b}]/{vec{b}cdot vec{b}}vec{b}#

Let us find the orthogonal projection of #vec{a}=(1,0,-2)# onto #vec{b}=(1,2,3)#.

#{(1,0,-2)cdot(1,2,3)}/{(1,2,3)cdot(1,2,3)}(1,2,3)={-5}/{14}(1,2,3)=(-5/14,-10/14,-15/14)#.


I hope that this was helpful.