How do I find the value of cos pi/12? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Konstantinos Michailidis Sep 11, 2015 It is #cos(pi/12)=1/4*(sqrt2+sqrt6)# Explanation: It is #cos(pi/12)=cos(pi/3-pi/4)=cos(pi/4)cos(pi/3)+sin(pi/4)sin(pi/3)=sqrt2/2*1/2+sqrt2/2*sqrt3/2=1/4*(sqrt2+sqrt2*sqrt3)=1/4(sqrt2+sqrt6)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 3838 views around the world You can reuse this answer Creative Commons License