How do I multiply complex numbers in polar form?

1 Answer

To explain this, I will name two generic complex.
c_1 = a*cis(alpha) and c_2 = b*cis(beta)

The product between c_1 and c_2 is:
ab*cis(alpha)cis(beta) =
ab*(cos(alpha)+isin(alpha)) (cos(beta)+isin(beta)) =
ab*({cos(alpha)cos(beta)-sin(alpha)sin(beta)} +
{i(sin(alpha)sin(beta)+cos(alpha)sin(beta)}) =
ab*{cos(a+b)+isin(a+b)}//

Therefore, we can assume that the product of the two complex numbers c_1 and c_2 can be generaly given by the form above.

Ex.:
(2*cis(pi)) * (3*cis(2pi)) = 6*cis(3pi) = 6*cis(pi)

Hope it helps.