How do I prove that 1secA+1+1secA1=2cscAcotA ?

1 Answer
Oct 4, 2015

1secA+1+1secA1

Taking the Lowest common Multiple,

secA1+secA+1secA+1(secA1)

As you may be aware, a2b2=(a+b)(ab)

Simplifying, 2secAsec2A1

Now sec2A1=tan2A=sin2Acos2A
and secA=1cosA

Substituting,

2cosAcos2Asin2A=2cosAsin2A

which can be written as 2cosAsinA(1sinA)

Now cosAsinA=cotAand1sinA=cosecA
Substituting, we get 2cotAcosecA