How do I prove that #2/(cotxtan2x) -= 1 - tan^2x#?

1 Answer
Jun 20, 2018

As proved below.

Explanation:

#cot x = 1/ tan x#

# tan 2x = (2 tan x) / (1 - tan^2 x)# - Identity.

To prove #2 / (cot x * tan 2x) = 1 - tan^2 x#

#2 / (cot x * tan 2x)#

=> (2 tan x) / tan 2x#

#=> (2 tan x) / ((2tan x) / (1 - tan^2 x))#

#=> (1 - tan^2 x) = R H S#