How do I prove that #2 sin ((C+D)/2) cos ((C-D)/2) = sin C+sin D#?

2 Answers
Nov 20, 2017

#"see explanation"#

Explanation:

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)sin(A+B)=sinAcosB+cosAsinB#

#•color(white)(x)sin(A-B)=sinAcosB-cosAsinB#

#"Adding the 2 equations gives"#

#sin(A+B)+sin(A-B)=2sinAcosB#

#"Subtracting the 2 equations gives"#

#sin(A+B)-sin(A-B)=2cosAsinB#

#"let "C=A+B" and "D=A-B#

#rArrA=(C+D)/2" and "B=(C-D)/2#

#rArrsinC+sinD=2sin((C+D)/2)cos((C-D)/2)#

Nov 20, 2017

See the proof below

Explanation:

We need

#sin(a+b)=sinacosb+sinbcosa#

#cos(a-b)=cosacosb+sinasinb#

#sin^2a+cos^2a=1#

#sin2a=2sinacosa#

Therefore,

#LHS=2sin((C+D)/2)cos((C-D)/2)#

#=2(sin(C/2)cos(D/2)+sin(D/2)cos(C/2))(cos(C/2)cos(D/2)+sin(C/2)sin(D/2))#

#=2(sin(C/2)cos(C/2)cos^2(D/2)+sin(D/2)cos(D/2)sin^2(C/2)+sin(D/2)cos(D/2)cos^2(C/2)+sin(C/2)cos(C/2)sin^2(D/2))#

#=2*1/2(sinCcos^2(D/2)+sinDsin^2(C/2)+sinDcos^2(C/2)+sinCsin^2(D/2))#

#=sinC(cos^2(D/2)+sin^2(D/2))+sinD(sin^2(C/2)+cos^2(C/2))#

#=sinC+sinD#

#=RHS#

#QED#