How do I prove that sum_(i=1)^n(x_i-mu)^2=sum_(i=1)^n(x_i)^2-nmu^2n∑i=1(xi−μ)2=n∑i=1(xi)2−nμ2?
1 Answer
Aug 7, 2018
Start with:
sum_(i=1)^n (x_i-mu)^2n∑i=1(xi−μ)2
Within the sum, distribute the square:
=sum_(i=1)^n (x_i-mu)(x_i-mu)=n∑i=1(xi−μ)(xi−μ)
=sum_(i=1)^n (x_i^2-2x_i mu + mu^2)=n∑i=1(x2i−2xiμ+μ2)
Distribute the sum notation to each term:
=sum_(i=1)^n x_i^2- sum_(i=1)^n 2x_i mu + sum_(i=1)^n mu^2=n∑i=1x2i−n∑i=12xiμ+n∑i=1μ2
Factor out the
=sum_(i=1)^n x_i^2- 2musum_(i=1)^n x_i + nmu^2
Using
=sum_(i=1)^n x_i^2- 2mu(nmu) + nmu^2
=sum_(i=1)^n x_i^2- 2nmu^2 + nmu^2
Combine like terms:
=sum_(i=1)^n x_i^2- nmu^2
Done!