How do I prove that #x=1# or #0# from solving #3^(2x+1) - 12(3^x) + 9 = 0#?

3 Answers
Apr 4, 2018

Split the addition of exponents into multipliciation:

#3^(color(red)(2x)+color(blue)1)-12(3^x)+9=0#

#3^color(red)(2x)*3^color(blue)1-12(3^x)+9=0#

#3(3^color(red)(2x))-12(3^x)+9=0#

#3(3^color(red)x)^2-12(3^x)+9=0#

Let #u=3^x#:

#3u^2-12u+9=0#

#u^2-4u+3=0#

#(u-1)(u-3)=0#

#u=1,3#

Put #3^x# back in for #u#:

#color(white){color(black)( (3^x=color(red)1,qquad3^x=color(red)3), (3^x=color(red)(3^0),qquad3^x=color(red)(3^1)), (x=color(red)0,qquadx=color(red)1):}#

That's it. Hope this helped!

Apr 4, 2018

See below

Explanation:

#3^(2x+1)-12·3^x+9=0# Reorganize

#3·3^(2x)-12·3^x+9=0#

lets make a change #z=3^x#. Then we have

#3z^2-12z+9=0# use the cuadratic formula

#z=(12+-sqrt(12^2-4·9·3))/6=(12+-sqrt(144-108))/6=(12+-6)/6#

The we have #z_1=3# and #z_2=1#

Undo the change #3^x=z_1=3#, then #x=1#

#3^x=z_2=1#, then #x=0#

Apr 4, 2018

#x=1 or x=0#

Explanation:

Here,

#3^(2x+1) - 12(3^x) + 9 = 0.....to[ as ,color(blue)(a^(m+n)=a^m*a^n]#

#3^(2x)3^1 - 12(3^x) + 9 = 0#

#3(3^x)^2-12(3^x)+9=0...to[as,color(blue)((a^m)^n=a^(mn)]#

Dividing both sides by #3#,we get

#(3^x)^2-4(3^x)+3=0#

Let , #3^x=a#

#a^2-4a+3=0#

We have,

#(-3)+(-1)=-4#, and

#(-3)xx(-1)=3#

So,

#a^2color(red)(-3a-1a)+3=0#

#a(a-3)-1(a-3)=0#

#(a-3)(a-1)=0#

#=>a-3=0 or a-1=0#

#=>a=3 or a=1.....towhere, color(blue)(a=3^x#

#3^x=3^1 or 3^x=3^0#

#=>x=1 or x=0#