How do I simplify #(3sqrt3 - 1)^2 / (2sqrt3 - 3)# ?
3 Answers
Explanation:
Explanation:
#"the first thing to do is expand the numerator using FOIL"#
#"note that "sqrtaxxsqrta=a#
#rArr(3sqrt3-1)^2=(3sqrt3-1)(3sqrt3-1)#
#=27-3sqrt3-3sqrt3+1#
#=28-6sqrt3#
#rArr((3sqrt3-1)^2)/(2sqrt3-3)=(28-6sqrt3)/(2sqrt3-3)#
#"the next step is to "color(blue)"rationalise the denominator"#
#"that is, eliminate the radical"#
#"to do this multiply numerator/denominator by the"#
#color(blue)"conjugate ""of the denominator"#
#"the conjugate of "2sqrt3-3" is "2sqrt3color(red)(+)3#
#rArr((28-6sqrt3)(2sqrt3+3))/((2sqrt3-3)(2sqrt3+3)#
#"expand numerator/denominator using FOIL"#
#=(56sqrt3+84-36-18sqrt3)/(12cancel(+6sqrt3)cancel(-6sqrt3)-9)#
#=(48+38sqrt3)/3#
#=16+38/3sqrt3#
Given expression
#((3sqrt3-1)^2)/(2sqrt3-3)#
Expanding the numerator using the identity
#(a-b)^2=a^2-2ab+b^2# , we get
#((3sqrt3)^2-2xx3sqrt3xx1+1^2)/(2sqrt3-3)#
#=>(27-6sqrt3+1)/(2sqrt3-3)#
#=>(28-6sqrt3)/(2sqrt3-3)#
Rationalizing the denominator and using the identity
#(28-6sqrt3)/(2sqrt3-3)xx(2sqrt3+3)/(2sqrt3+3)#
#=>((28-6sqrt3)(2sqrt3+3))/((2sqrt3)^2-(3)^2)#
#=>((56sqrt3+84-36-18sqrt3))/((2sqrt3)^2-(3)^2)#
#=>((38sqrt3+48))/((12-9)#
#=>2/3(19sqrt3+24)#