How do I use completing the square to rewrite the equation of an ellipse in standard form?

1 Answer
Oct 19, 2014

To demonstrate, let's try transforming the equation below into standard form.

4x^2 + 9y^2 + 72y - 24x + 144 = 04x2+9y2+72y24x+144=0

The first thing to do is group xxs and yys together

(4x^2 - 24x) + (9y^2 + 72y) + 144(4x224x)+(9y2+72y)+144

Factor out x^2x2's and y^2y2's coefficient

4(x^2 - 6x) + 9(y^2 + 8y) + 144 = 04(x26x)+9(y2+8y)+144=0

Before we continue, let's recall what happens when a binomial is squared


(ax + b)^2 = a^2x^2 + 2abx + b^2(ax+b)2=a2x2+2abx+b2


For our problem, we want x^2 - 6xx26x and y^2 + 8yy2+8y to be perfect squares

For xx, we know that

a^2 = 1a2=1
=> a = 1, a = -1a=1,a=1

2ab = -62ab=6
2(1)b = -62(1)b=6
2b = -62b=6
b = -3b=3
=> b^2 = 9b2=9

Note that substituting a = -1a=1 will result to the same b^2b2

Hence, to complete the square, we need to add 99


Meanwhile, for yy

a^2 = 1a2=1
=> a = 1, a = -1a=1,a=1

2ab = 82ab=8
2(1)b = 82(1)b=8
2b = 82b=8
b = 4b=4
=> b = 16b=16


Now, let's add our b^2b2s into the equation.

4(x^2 - 6x) + 9(y^2 + 8y) + 144 = 04(x26x)+9(y2+8y)+144=0

4(x^2 - 6x + 9) + 9(y^2 + 8y + 16) + 144 = 04(x26x+9)+9(y2+8y+16)+144=0

We added something into the left-hand side, to retain the "equality", we need to add the same value to the right-hand side (or substract the value again from the left-hand side)

4(x^2 - 6x + 9) + 9(y^2 + 8y + 16) + 144 = 0 + 4(9) + 9(16)4(x26x+9)+9(y2+8y+16)+144=0+4(9)+9(16)
4(x^2 - 6x + 9) + 9(y^2 + 8y + 16) + 144 = 1804(x26x+9)+9(y2+8y+16)+144=180

=> 4(x - 3)^2 + 9(y + 4)^2 + 144 = 1804(x3)2+9(y+4)2+144=180
=> 4(x - 3)^2 + 9(y + 4)^2 = 180 - 1444(x3)2+9(y+4)2=180144
=> 4(x - 3)^2 + 9(y + 4)^2 = 364(x3)2+9(y+4)2=36

=> (4(x - 3)^2 + 9(y + 4)^2 = 36)/364(x3)2+9(y+4)2=3636

=> (x - 3)^2/9 + (y + 4)^2/4 = 1(x3)29+(y+4)24=1