How do I use Pascal's triangle to expand a binomial?

1 Answer
Oct 31, 2015

Rows of Pascal's triangle provide the coefficients to expand (a+b)^n(a+b)n as follows...

Explanation:

To expand (a+b)^n(a+b)n look at the row of Pascal's triangle that begins 1, n1,n. This provides the coefficients.

enter image source here

For example, (a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4(a+b)4=a4+4a3b+6a2b2+4ab3+b4 from the row 1, 4, 6, 4, 11,4,6,4,1

How about (2x-5)^4(2x5)4 ?

Let a = 2xa=2x and b = -5b=5.

Then:

(2x-5)^4 = (a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4(2x5)4=(a+b)4=a4+4a3b+6a2b2+4ab3+b4

=(2x)^4+4(2x)^3(-5)+6(2x)^2(-5)^2+4(2x)(-5)^3+(-5)^4=(2x)4+4(2x)3(5)+6(2x)2(5)2+4(2x)(5)3+(5)4

=16x^4+4(8x^3)(-5)+6(4x^2)(25)+4(2x)(-125)+(625)=16x4+4(8x3)(5)+6(4x2)(25)+4(2x)(125)+(625)

=16x^4-160x^3+600x^2-1000x+625=16x4160x3+600x21000x+625