How do I use the limit definition of derivative to find f'(x) for f(x)=1/(1-x) ?

1 Answer
Oct 3, 2014

f'(x)=lim_(h->0) (f(x-h)-f(x))/h

f(x)=1/(1-x)

f(x+h)=1/(1-(x+h))=1/(1-x-h)

f'(x)=lim_(h->0) (1/(1-x-h)-1/(1-x))/h

f'(x)=lim_(h->0) (1/(1-x-h) * (1-x)/(1-x) -1/(1-x)*(1-x-h)/(1-x-h))/h

Find the least common denominator

f'(x)=lim_(h->0) ((1-x)/((1-x-h)(1-x))-(1-x-h)/((1-x-h)(1-x)))/h

Distribute the negative in the numerator of the complex fraction

f'(x)=lim_(h->0) ((1-x-1+x+h)/((1-x-h)(1-x)))/h

Simplify the numerator of the complex fraction

f'(x)=lim_(h->0) ((h)/((1-x-h)(1-x)))/h

Division is equivalent to multiplying by the reciprocal

f'(x)=lim_(h->0) (h)/((1-x-h)(1-x))*1/h

Cross cancel the h factors

f'(x)=lim_(h->0) (1)/((1-x-h)(1-x))

Substitute in the value of 0 for h and simplify

=(1)/((1-x-0)(1-x))

=(1)/((1-x)(1-x))

=1/(1-x)^2