How do integrate int e^(cos)(t) (sin 2t) dt between a = 0, b = pi? Calculus Techniques of Integration Integration by Parts 1 Answer Tom Apr 10, 2015 Start with int_0^pi e^cos(t)sin(2t) dt = 2int_0^pie^cos(t)sin(t)*cos(t)dt Now by part -2int-sin(t)e^cos(t)*cos(t) dt u'=-sin(t)e^cos(t) u=e^cos(t) v = cos(t) v' = -sin(t) You have : -2([cos(t)*e^cos(t)]_0^pi - int_0^pi-sin(t)e^cos(t) dt) =-2[cos(t)*e^cos(t)-e^cos(t)]_0^pi =4/e Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 31395 views around the world You can reuse this answer Creative Commons License