How do integrate int e^(cos)(t) (sin 2t) dt between a = 0, b = pi?

1 Answer
Apr 10, 2015

Start with int_0^pi e^cos(t)sin(2t) dt = 2int_0^pie^cos(t)sin(t)*cos(t)dt

Now by part

-2int-sin(t)e^cos(t)*cos(t) dt

u'=-sin(t)e^cos(t)
u=e^cos(t)

v = cos(t)
v' = -sin(t)

You have : -2([cos(t)*e^cos(t)]_0^pi - int_0^pi-sin(t)e^cos(t) dt)

=-2[cos(t)*e^cos(t)-e^cos(t)]_0^pi

=4/e