Let's rewrite the inequality
#x^2+3x-10<0#
Let's factorise
#(x-2)(x+5)<0#
Let #f(x)=(x-2)(x+5)#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-5##color(white)(aaaa)##2##color(white)(aaaaa)##+oo#
#color(white)(aaaa)##x+5##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)<0# when #x in ]-5, 2[#
or #-5 < x <2#