How do we know that Tan(180-x)=-tanx And Cos(180-x)=-cosx Sin(180-x)=Sinx Tan(90-x)=1/-tanx etc...is there any way we can find out these?

1 Answer
Apr 20, 2018

See below

Explanation:

Let's try proving two them

#tan(180^@-x)=-tanx#

Apply tangent sum identity:
#(tan180^@-tanx)/(1+tan180^@tanx)#

Simplify:
#(0-tanx)/(1+0*tanx)#

#-tanx/1= -tanx#

The second one we will try is
#tan(90^@+x)=1/-tanx#:

Unfortunately #tan(90^@)# is undefined so:
Apply quotient identity:
#sin(90^@+x)/cos(90^@+x)=1/-tanx#:

Now apply the sine and cosine sum identities:
#(sin90^@cosx+cos90^@sinx)/(cos90^@cosx-sin90^@sinx)=1/-tanx#

Simplify:
#((1)cosx+(0)sinx)/((0)cosx-(1)sinx)=1/-tanx#

#cosx/-sinx=-1/tanx#

Apply quotient identity:
#-cotx=-1/tanx#

Apply reciprocal identity:
#-1/tanx=-1/tanx#