How do we know that Tan(180-x)=-tanx And Cos(180-x)=-cosx Sin(180-x)=Sinx Tan(90-x)=1/-tanx etc...is there any way we can find out these?

1 Answer
Apr 20, 2018

See below

Explanation:

Let's try proving two them

tan(180^@-x)=-tanx

Apply tangent sum identity:
(tan180^@-tanx)/(1+tan180^@tanx)

Simplify:
(0-tanx)/(1+0*tanx)

-tanx/1= -tanx

The second one we will try is
tan(90^@+x)=1/-tanx:

Unfortunately tan(90^@) is undefined so:
Apply quotient identity:
sin(90^@+x)/cos(90^@+x)=1/-tanx:

Now apply the sine and cosine sum identities:
(sin90^@cosx+cos90^@sinx)/(cos90^@cosx-sin90^@sinx)=1/-tanx

Simplify:
((1)cosx+(0)sinx)/((0)cosx-(1)sinx)=1/-tanx

cosx/-sinx=-1/tanx

Apply quotient identity:
-cotx=-1/tanx

Apply reciprocal identity:
-1/tanx=-1/tanx