How do you apply the ratio test to determine if Sigma (5^n)/(6^n-5^n) from n=[1,oo) is convergent to divergent?

1 Answer
Jun 24, 2017

The series:

sum_(n=1)^oo 5^n/(6^n-5^n)

is convergent.

Explanation:

Evaluate the ratio:

abs(a_(n+1)/a_n) = abs ( (5^(n+1)/(6^(n+1)-5^(n+1)))/(5^n/(6^n-5^n)))

abs(a_(n+1)/a_n) = (5^(n+1)/5^n ) ( (6^n-5^n) / (6^(n+1)-5^(n+1)))

abs(a_(n+1)/a_n) = 5*6^n( (1-(5/6)^n) / (6^(n+1)-5^(n+1)))

abs(a_(n+1)/a_n) = 5/6 *6^(n+1)( (1-(5/6)^n) / (6^(n+1)-5^(n+1)))

abs(a_(n+1)/a_n) = 5/6 ( (1-(5/6)^n) / ((6^(n+1)-5^(n+1) )/ 6^(n+1)))

abs(a_(n+1)/a_n) = 5/6 ( (1-(5/6)^n) / (1-(5/6)^(n+1) ))

Now as 5/6 < 1

lim_(n->oo) (5/6)^n = lim_(n->oo) (5/6)^(n+1) = 0

so:

lim_(n->oo) abs(a_(n+1)/a_n) = 5/6 lim_(n->oo) ( (1-(5/6)^n) / (1-(5/6)^(n+1) )) = 5/6 < 1

which proves the series to be convergent.