How do you calculate DeltaS_(sys) for the isothermal expansion of 1.5 mol of an ideal gas from 20.0 L to 22.5L?
1 Answer
I got
We begin by realizing that an isothermal expansion is one where
To get from
DeltaS_"sys" = int_(V_1)^(V_2) ((delS)/(delV))_TdV
We denote molar entropy as
color(green)(DeltabarS_"sys" = int_(barV_1)^(barV_2) ((delbarS)/(delbarV))_TdbarV)
From the Maxwell Relation for
dbarA = -barSdT - PdbarV ,
we use the cross-derivative relationship to get
((delbarS)/(delbarV))_T = color(green)(((delP)/(delT))_barV) ,
meaning that the change in entropy due to the change in volume at constant temperature is equal to the change in pressure due to the change in temperature at a constant volume.
Next, we would have to figure out what this new derivative gives for the ideal gas law. Recall that the ideal gas law is:
PV = nRT
or
PbarV = RT
=> P = (RT)/(barV)
The partial derivative of pressure with respect to temperature at constant molar volume is then:
=> ((delP)/(delT))_barV = (del)/(delT)[(RT)/(barV)]_barV
= R/(barV)(del)/(delT)[T]_barV = R/(barV)((delT)/(delT))_barV
= R/(barV)cancel((dT)/(dT))
= R/(barV)
So, what's left is to integrate the result by substituting
color(blue)(DeltabarS_"sys") = int_(barV_1)^(barV_2) R/(barV)dbarV
= Rint_(barV_1)^(barV_2) 1/(barV)dbarV = R|[ln(barV)]|_(barV_1)^(barV_2)
= R[ln(barV_2) - ln(barV_1)] = Rln(barV_2/(barV_1)) = Rln((V_2"/"cancel(n))/(V_1"/"cancel(n)))
= color(blue)(Rln(V_2/(V_1)))
Notice how the molar volumes have canceled out to give the regular volume.
Therefore, the change in entropy for the system at constant temperature is:
color(blue)(DeltaS_"sys") = nDeltabarS_"sys" = nRln(V_2/V_1)
= ("1.5 mols")("8.314472 J/mol"cdot"K")ln(("22.5 L")/("20.0 L"))
= color(blue)("1.47 J/K")